
QEMU CAN Controller Emulation with Connection to a Host

System CAN Bus

Pavel Pisa
Czech Technical University in Prague

Technická 2, 121 35 Praha 6, Czech Republic

pisa@cmp.felk.cvut.cz

Jin Yang
University of Chinese Academy of Sciences

ShenYang Province, China

jinyang.sia@gmail.com

Michal Sojka
Czech Technical University in Prague

Technická 2, 121 35 Praha 6, Czech Republic

sojkam1@fel.cvut.cz

Abstract

Fast, easy and frequent/continuous testing is critical for embedded operating systems and applications
development. The QEMU system emulator provides a solution to easily test developed operating systems
kernels and drivers on multiple emulated architectures and board models. But emulation of automotive
and industrial control buses is not available in QEMU yet. Presented project implements CAN controller
emulation for QEMU. The emulated controllers can be connected to another ones inside the QEMU
instance or can be connected to the host system virtual or physical CAN bus network if GNU/Linux is
used as QEMU host system. The PCI based CAN bus interface card was selected as the first target for
our work because it can be easily attached to all QEMU architectures that support PCI/PCIe.

1 Introduction

System level virtualization is technique used mas-
sively for server and cloud services but same solutions
can help significantly in applications, operating sys-
tems and drivers development as well. QEMU (to-
gether with KVM) is used on servers but the same
project provides ground for emulation of client sys-
tem architecture different from a host system one.
QEMU is base of Android SDK where it is used to
emulate hardware of thousands of different Android
system based devices and mobile phones to ease ap-
plications cross-development.

The QEMU provides quite broad and precise em-
ulation of many architectures and computer boards
used in embedded control systems but support for

development of industrial and automotive commu-
nications and input/output peripherals and cards is
quiet limited till now. But testing or even continu-
ous integration and automated testing is important
for development of such systems.

The presented project fills a gap and add CAN
bus and CAN controller emulation to QEMU. CAN
(Control Area Network) is bus which has been devel-
oped by Bosch company and is probably present in
all modern cars and in many industrial applications
now. Preparation of environment for CAN drivers
development for RTEMS operating has been initial
impulse for this project creation. Intention has been
to test generic CAN bus code for more CPU architec-
tures and for that reason generic pluggable hardware
has been selected instead of specific SoC controller.

1

The SJA1000 controller has been selected to be
emulated because it is classic well knows and quite
often used chip. It has been integrated in QEMU
as simple PCI memory mapped device to allow it
easy combination with different computer systems
(QEMU machines). Then emulation of Kvaser PCI
CAN card with I/O mapped SJA1000 has been
added to allow run unmodified mainline Linux ker-
nel with appropriate drivers as guest and compare
emulation with real hardware which we use in many
of our another projects.

Support to connect QEMU virtual CAN buses
to hos system CAN infrastructure has been imple-
mented because remote side/devices are required to
establish and test CAN communication and complete
applications. This solution works with SocketCAN
(standard Linux CAN infrastructure) on host side
for now. The emulated CAN bus can be connected
to real CAN interface or software only VCAN net-
work device. The mix of real physical devices and
emulated ones running on host system can be com-
municated with from guest system then.

Options to emulate CANopen industrial con-
trol protocol communicating devices by our Ort-
CAN project software and combined emulation of
COMEDI drivers supported data acquisition cards
to mimic complete industrial environment for guest
system is described as well.

The last section discusses possible future project
development directions – option to emulate SoC in-
tegrated controllers and extend developed infrastruc-
ture to support CAN FD (flexible datarate) con-
trollers emulation. Many CAN based projects needs
to prepare for CAN FD technology upgrade but the
hardware is now rare, expensive and its combination
with different CPU systems can be impossible in real
word due to connectors and CPU address and data
buses cannot be adapted as easily as QEMU software
ones.

2 Project Background

Project originates in interest of RTEMS1 operating
system community to develop generic CAN infras-
tructure for this system. The intention has been for-
mulated as one of Google Summer of Code (GSoC)
2013 topic. When student Jin Yang applied for
this project, discussion about target architecture and
platform started. RTEMS supports many target sys-
tems but many of them are extremely expensive and
or hard to obtain (e.g. Aeroflex GR712RC SPARC).

There exist target specific emulators with CAN con-
troller emulation included (for example for the men-
tioned GR712RC it is TSIM) but RTEMS commu-
nity runs periodic check of system builds for most ar-
chitectures under more widely available QEMU and
Skyeye emulators. Because these emulators did not
include CAN bus support and RTEMS project main-
tainers have preferred to have option to test results
without need of testing on specific hardware, it has
been decided that an RTEMS GSoC slot would be
assigned to work on extending QEMU to provide test
bench for future RTEMS CAN related projects de-
velopment and the actual development of CAN bus
generic infrastructure has been postponed.

Because x86, PowerPC, ARM and SPARC are
RTEMS most important supported architectures and
CAN controllers integrated on SoC vary or are not
present (e.g. in case of x86), it has been decided
to start with controller which can be connected to
at least one platform/machine for each architecture.
There exists machines with PCI bus support for each
of these architectures and that was why implemen-
tation of virtual PCI card with widely used NXP
SJA1000 controller has been chosen.

3 Implemenation

Figure 1 depicts the CAN bus related virtual compo-
nents and their connection to the host system hard-
ware and applications running on host and guest sys-
tems. Real hardware and physical/real CAN bus
can be seen at the top. Real hardware is available
to host system user-space programs through Socket-
CAN infrastructure as network socket of CAN pro-
tocol/address family (AF CAN) when QEMU is run
on Linux kernel based host system. QEMU runs as
user-space program on the host system and emulates
virtual CAN controllers hardware (QEMU devices)
which are seen as PCI devices by the guest operating
system kernel. The individual emulated controllers
can be interconnected together in groups represent-
ing virtual can buses. The group membership is spec-
ified by canbus device parameter. The virtual CAN
bus can be connected to the host system one when
host system network device is specified for one of
configured QEMU CAN devices (host parameter).

QEMU represents emulated hardware compo-
nents by QEMU Object Model (QOM) which is
self based on GLib Objects (GTK+/GNOME ori-
gin). The emulated devices are represented by De-
vice objects (QDev structure DeviceState) which
are connected to buses (structure BusState). Object

1https://www.rtems.org/

2

PCIDevice inherits from QDev to represent periph-
erals connected to the emulated PCI bus.

canbus0
CanBusState

canbus1
CanBusState

host=can0
CanBusHostConnectState

CanBusClientState

QEMU system emulator

HOST system
Linux kernel

SocketCAN
net device can0

module kvaser_pci

Kvaser PCI
CAN card

socket
AF_CAN (can_raw)

socket
AF_CAN (can_raw)

Real PCI bus

Real CAN bus

Host system CAN applications:
 candump, cangen, OrtCAN,canblaster
 CANopen canslave, qcanalyzer, etc.

CanBusClientState
CanSJA1000State
KvaserPCIState

device kvaser_pci

PCIDevice

CanBusClientState
CanSJA1000State
KvaserPCIState

device kvaser_pci

PCIDevice

CanBusClientState
CanSJA1000State

CanPCIState

device can_pci

PCIDevice

Emulated PCI bus

Emulated CPU, memory and IO space

Guest system
Linux kernel, RTEMS, etc.

CAN drivers
SocketCAN, LinCAN, ...

CAN application
in virtual environments

CAN application
in virtual environments

Data Address bus, etc

FIGURE 1: CAN Buses and Hardware Ar-

chitecture in QEMU

Actual CAN controller is usually accessible as
set of registers which can be mapped into computer
systems memory address space, represented as I/O
ports or even hidden behind indirect access through
externally visible index and data registers. An op-
erating system device driver configures controller,
prepares message identifier, parameters and data by
writing to the registers and then marks message as
ready to be sent by write to some control register.
The reception of a message is usually signaled to
CPU as interrupt activation and then driver uses
read operations to obtain message content and write
to confirm that next message can replace buffer hold-
ing read message data. There are alternatives to use
DMA or bus-mastering for more complex controllers
but register read/write and interrupts signaling is all
what is used by SJA1000 controller which has been
selected as the first target of the project.

The NXP SJA1000 CAN controller is standalone
chip which is used in many systems. There exists
ISA, PCI, PCIe cards based on this chip and it has
been often connected to local bus of SoCs without
CAN controller support as well. Because mapping
of the chip registers to buses can differ from sys-
tem to system the chip registers and functionality
emulation has been implemented separate from the
actual integration to the system and mapping on
the system bus. The SJA1000 chip state is repre-
sented by CanSJA1000State structure and provides

only minimal set of functions – can sja mem read(),
can sja mem write() to manipulate chip state from a
emulated CPU side. The corresponding source code
is located in the qemu/hw/can/can sja1000.c file.
The mechanism to signal interrupt is generic as well,
irq raise and irq lower parameters of can sja init()
are used to supply actual implementation for inter-
rupt handling for concrete chip connection to the sys-
tem.

It is necessary to deliver message to other con-
trollers in the group (connected to the same CAN
bus) when it is ready to be sent. The connec-
tion of the CAN controller to virtual CAN bus is
represented by CanBusClientState structure which
can be embedded to the object representing con-
troller (CanSJA1000State for SJA1000). The list
of these structures is attached to the object repre-
senting virtual CAN bus (structure CanBusState).
The client notifies bus than it sends message by
calling can bus client send() function. CAN bus
generic code iterates over CanBusClientState struc-
tures. An client method can receive() is called to
check if client is active and reception is enabled. In
the case of positive reply, receive() method is called.
These methods are specified in CanBusClientInfo for
each CanBusClientState. When bus client/controller
specific receive() is called, CAN message con-
tent represented by structure qemu can frame is
copied to internal controller buffers and irq raise()
is called if interrupts are enabled in appropri-
ate controller register. The respective code can
be found in files qemu/hw/can/can core.c and
qemu/include/can/can emu.h.

The bare SJA1000 chip emulation offers only
functions to access registers and actual mapping to
the computer bus is left on the wrapper objects
which includes CanSJA1000State and derives from
QOM object specific for the bus integration. Simple
but complete PCI card/device (in QEMU meaning)
which maps SJA1000 to single memory region (spec-
ified by base address register BAR0) has been im-
plemented first. The region operations (MemoryRe-
gionOps can pci bar0 read and can pci bar0 write)
maps directly to the SJA1000 chip read/write op-
erations and only byte size access is implemented
(wider access is emulated by QEMU infrastruc-
ture). Interrupt connection is directly represented
by qemu irq object embedded in the CanPCIState
CAN card structure and SJA1000 interrupts emula-
tion is routed to core QEMU qemu irq raise() and
qemu irq lower() functions. The card state contains
and initialization fills PCI device header. Arbitrarily
chosen PCI Vendor/ID combination is used for now
(1af4:beef).

3

The functionality of simple PCI SJA1000 card
can controller emulation has been tested by LinCAN
driver. LinCAN driver is simple but low-latency
character device based driver for Linux kernel and
its extension to support selected PCI device identifi-
cation and SJA1000 chip mapped directly to PCI de-
vice memory range has been straightforward. (Note:
we are not aware of real PCI card/device with this
simple SJA1000 mapping so we cannot use some
standard identifications nor unmodified driver).

The single, dual and quad Kvaser PCI CAN con-
trollers cards are used by our CTU Industrial Infor-
matics group in more projects where we need to con-
nect CAN bus to PC based systems. Because we
know that hardware well and even implemented Lin-
CAN driver support for it and Linux kernel mainline
SocketCAN driver kvaser_pci is based on our code,
the emulation of this board has been next target for
our QEMU CAN bus emulation project.

There are one, two or four SJA1000 CAN con-
troller chips present on the Kvaser PCI CAN card.
The interfacing of the chips to PCI bus is real-
ized by AMCC S5920 PCI bridge which collects
and gates interrupts. The chips are mapped to
an I/O space region controlled by BAR1. An re-
gion 0 is occupied by the bride control registers
and region 2 contains registers to identify card fla-
vor, number of populated channels and simulate
interrupts. The card vendor/device PCI identi-
fication is 10e8:8406. Mapping of the SJA1000
chip (single channel version) to the I/O space is
straightforward – functions kvaser pci sja io read()
and kvaser pci sja io write(). The IRQ processing
takes in account local gating/enable state in S5920
register and stores state for readback. Implemented
emulation works with unmodified mainline Linux
driver as well as with LinCAN driver.

The implementation is maintained to be compat-
ible with actual stable QEMU versions. Branch can-

pci of CTU IIG QEMU repository [2] points to the
actual supported CAN emulation version. Branches
named as merged-X.Y point to the merge of several
locally developed branches, including can-pci. Ac-
tual version for QEMU-2.4 can be found on a branch
merged-2.4.

4 Running QEMU with CAN
Bus

QEMU -device parameter inserts non default ma-
chine hardware devices emulation into QEMU sys-
tem level emulator for specific architecture and ma-

chine – i.e. qemu-system-x86_64 for PC compat-
ible 64-bit computer. For simple directly mapped
CAN PCI card parameter pci_can device needs to
be added. Parameter canbus= can be specified for
given device to select into which virtual bus is de-
vice connected. If a bus is not specified, default bus
name canbus0 is assumed. Parameter host= allows
to specify connection of the virtual CAN bus to CAN
network device on the host system. SocketCAN on
Linux is only supported by actual version. Usual host
system CAN network device name is in form can0

for real controllers and usually vcan0 for software
only host side bus. Optional parameter model= is in-
cluded to allow select can controller chip connected
to PCI card. The SJA1000 is only supported one
for now. The Debian amd64 distribution installed
as host operating system as well as guest operating
system on disk image is assumed for next examples.

4.1 Virtual x86 Native Targets

Next command sequence configures the host side vir-
tual CAN bus network

modprobe can-raw

modprobe vcan

ip link add dev vcan0 type vcan

ip link set vcan0 up

The command line that starts QEMU with single in-
ternal bus connected to host-side vcan0 interface is:

qemu-system-x86_64 -enable-kvm \

-kernel vmlinuz-3.16.0-4-amd64 \

-append "root=/dev/sda1"

-hda disk-image \

-device can_pci,model=SJA1000,\

canbus=canbus0,host=vcan0

The LinCAN driver then can be compiled on guest
system and loaded to access virtual CAN bus con-
troller:

insmod lincan.ko hw=pcisja1000mm io=0

Next example demonstrates how to connect two
Kvaser CAN PCI single channel cards to the target
system and interconnect them with Kvaser card on
the host system. SocketCAN on the host system is
configured like this:

modprobe can-raw

modprobe kvaser-pci

ip link set can0 type can bitrate 1000000

ip link set can0 up

4

Virtual machine is started by command:

qemu-system-x86_64 -enable-kvm \

-kernel vmlinuz-3.16.0-4-amd64 \

-append "root=/dev/sda1"

-hda disk-image \

-device kvaser_pci,canbus=canbus0,host=can0 \

-device kvaser_pci,canbus=canbus0

Notice, that the specification of connection to the
host system CAN bus is not repeated for the sec-
ond device on the same bus. Multiple connections
of virtual bus to the host level would lead to infinite
message looping between QEMU and the kernel. The
same mainline driver is used for guest Linux system:

modprobe can-raw

modprobe kvaser-pci

ip link set can0 type can bitrate 1000000

ip link set can0 up

This way, applications running in the guest system
can access real CAN devices connected to host com-
puter.

Functionality of the setup can be verified with
SocketCAN utilities. CAN messages can be gener-
ated on the guest side by:

cangen can0 -e -I 123 -g 1000 \

-D 11223344DEADBEEF -L 8

and delivery checked on host side by:

candump vcan0

To check the communication in the opposite direc-
tion, cangen and candump can be swapped but bus
names vcan0 and can0 should be preserved.

The QEMU can be run without graphics support
and guest kernel output can be passed to host system
through serial port which appears on QEMU process
standard output on the host side.

-nographic \

-append "root=/dev/sda1 console=ttyS0"

This setup eases automatic testing quite well.

4.2 ARM Targets

Next configuration has been used to test drivers on
virtual ARM platform with Raspbian distribution.

qemu-system-arm -cpu arm1176 \

-m 256 -M versatilepb

Cortex based systems (realview-pbx-a9 or
vexpress-a15) can be used with Debian armhf dis-
tribution. xilinx-zynq-a9 is very interesting ma-
chine as well but it does not support PCI in actual
QEMU versions. Another promising but not tested
option is virt machine which hardware structure is
configured by device tree.

4.3 CANopen and Industrial I/O De-
vices

The setup with multiple CANopen devices connected
to the bus CAN bus can be setup easily. Ort-
CAN projects provides program canslave which can
mimic real CANopen device when appropriate Elec-
tronics Data Sheet (EDS) describing device is avail-
able. The program reads EDS file and builds de-
vice object dictionary during startup. It even allows
to connect selected objects from CANopen object
dictionary (OD) to the data/variable objects pro-
vided by dynamically loadable libraries. This way
it is possible to connect emulated devices to con-
trolled plant process model environment. Connec-
tion of CANopen device emulator to the host system
software only/virtual CAN device.

./canslave -d socketcan:vcan0 -n 5 \

-g 6 -e device-ds-401.eds

Parameters selects CANopen node ID 5, higher level
of debugging output and loading of specified EDS
file. More such devices for different CANopen nodes
with same or different CANopen profiles can be
started this way.

The provided merged-2.4 branch of QEMU in-
cludes emulation of data acquisition/control PCI
card Humusoft MF624. The emulation includes dig-
ital and analog inputs and outputs sections. An
COMEDI driver for this hardware is included in
Linux kernel mainline already. The external ana-
log and digital signals “terminals” are accessible as
socket listening on specified TCP port on the host
side of QEMU. When the port is connected then sim-
ple text protocol informs about signals state/levels
changes which are controller by application running
on the guest system. Digital signals inputs and “volt-
age” levels reported by emulated ADC channels to
guest system application are controlled by sending
text commands to the port. QEMU parameters:

-device mf624,port=55555

5

More detailed description can be found in [6].
CAN communication, COMEDI based I/O cards and
direct UIO based Humusoft MF624 is included in
ERT Linux Matlab/Simulink target as well [7].

5 Possible Future Enhance-

ments

The SJA1000 controller implementation is minimal
for now. FIFO to hold more incoming messages
should be implemented in the chip emulator to be
inline with a real chip.

There is not implemented mechanism to slow-
downmessages rate and reflect time require to deliver
message on real CAN bus in virtual environment as
well as there is no mechanism to generate errors and
bus state transitions to passive and off mode if only
one emulated CAN controller hardware is configured
and active on the bus.

Some mechanism should be added to prevent lost
of messages when application on emulated machine
is not processing incoming messages fast enough.
Some real word CAN controllers can generate over-
load frames to solve such situation. This mechanism
can be emulated by delay in delivery of messages
through the bus.

The virtual CAN bus model should be probably
converted from plain “C” structures to QOM model
as well to allow complete system freeze and thaw
in new QEMU program instance/processes. The re-
quirements to support state store has not been in-
vestigated for the bus. The SJA1000 and emulated
cards state store is included but has not been tested.

PCI CAN cards emulation allows to use same
emulated hardware to test applications in different
architectures environment. But SoC integrated CAN
controllers prevails in embedded systems today. Em-
ulation of BOSCH and Texas Instruments used CAN
controllers found on BeagleBone AM335x would be
more alone with this trend.

CAN FD (Flexible Datarate) standardization
processes finalization is now ongoing. Linux ker-
nel/SocketCAN generic support and initial con-
trollers support is available now. But hardware
is rare and it would take years before all required
application can be adapted for this new standard.
Yet availability of easily accessible emulated/virtual
CAN FD controller can simplify the situation.

6 Conclusions

The presented project provides simple but working
environment for CAN applications development and
testing in virtualized system. Code has been suc-
cessful maintained for two years to be compatible
with stable QEMU releases. The basic infrastruc-
ture, which allows to add emulation of more CAN
controllers, is provided.

The functionality has been tested for x86 native
and ARM foreign guest CPU architectures.

Project is available in a public repository on
GitHub [2].

Acknowledgment

The first version of code been funded by Google Sum-
mer of Code 2013 on base of RTEMS organization
slot.

References

[1] “QEMU project documentation” [Online]. Avail-
able: http://wiki.qemu.org/Manual

[2] “QEMU with CAN emulation on GitHub”
[Online]. Available: https://github.com/CTU-
IIG/qemu branch:can-pci

[3] Jin Yang, “GSoC 2013 CAN for QEMU”
[Online]. Available: https://github.com/Jin-
Yang/QEMU-1.4.2

[4] “eLinux CAN documentation” [Online]. Avail-
able: http://elinux.org/CAN Bus

[5] “OCERA Real-Time CAN” [Online]. Available:
http://ortcan.sourceforge.net/

[6] P. Pisa, R. Lisovy, “COMEDI and UIO drivers
for PCI Multifunction Data Acquisition and
Generic I/O Cards and Their QEMU Virtual
Hardware Equivalents”, in 13th Real-Time Linux

Workshop, OSADL 2011

[7] M. Sojka, P. Pisa, “Usable Simulink Embed-
ded Coder Target for Linux”, in 16th Real Time

Linux Workshop, OSADL 2014

6

